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Abstract

The paper presents a finite element method for 3D incompressible fluid flows with capillary free boundaries. It uses a

fixed Eulerian grid of 10 nodes (P2 � P1) tetrahedra and tracks the free boundary using a six nodes (P2) triangular

surface grid. In order to improve the mass conservation properties of the method, a local enrichment of the finite el-

ement basis in the elements intersected by the free boundaries is employed. In addition to the surface tracking, it also

advects a smooth indicator function for an easy identification of the fluid properties in the different parts of the domain.

The advective part of the Navier–Stokes equations is split and integrated with a characteristic method. The remaining

generalized Stokes problem is resolved by means of an inexact outer–inner (Uzawa) iteration with a properly chosen

preconditioner. The performance of this technique is evaluated on several problems involving droplets in viscous

liquids.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The numerical solution of incompressible flows involving more than one fluid is, with no doubt, one of the

most challenging tasks in Computational Fluid Dynamics (CFD). The problems of tracing the interfaces,
properly interpolating the unknown quantities in the time dependent domains and the solution of the re-

sulting (often badly conditioned) linear systems is a serious problem in 2D but it becomes a much harder task

in 3D. In addition, one often needs to cope with the singularities imposed by surface forces on the time

dependent interfaces between the fluids. The problem can be further complicated if contact lines of different

types are to be taken into account. The need for solution of such problems comes from a variety of appli-
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cations, the most important probably being the understanding of the dynamics of multiphase flows. Initially

simulations have been used to study the behaviour of a single bubble or droplet in another fluid (see for

example [1,2]). The development of the computational techniques and resources made it possible nowadays

to perform a direct simulation of multiparticle flows. Probably the most impressive computations of a large

number of droplets in a viscous fluid have been recently presented by Tryggvason et al. [3] (see also the

references therein). Other areas of application are film coating, plastic molding, Marangoni convection in

thin films and many others but since the final goal of the present study is to achieve a truly direct simulation

of low and medium void fraction multiphase flows we will not address the problems related to these ap-
plications further. Moreover, the former application contains most of the problems for the numerical

algorithms and therefore a successful algorithm developed for it can be applied in other areas as well.

Tryggvason et al. [3] classify the different types of methods for flows involving fluid–fluid interfaces into

four categories: front capturing techniques, boundary-fitted techniques, Lagrangian (or arbitrary Eulerian–

Lagrangian, ALE) techniques and front tracking techniques. We refer the reader to [3] for obtaining a very

complete list of publications on methods in all these categories. There is a direct ideological relation be-

tween the front capturing and front tracking techniques. Therefore, we will refer to this group of methods

as Eulerian (with unsteady local refinement in some cases) since it solves the Navier–Stokes equations on
fixed (possibly adapted) grid unlike the Lagrangian (or ALE) methods that solve them on a grid that

follows (or partially follows) the characteristics of the flow. The boundary-fitted methods are based on

global coordinate transformations and therefore are not suitable for 3D flows involving more than one

interface. In addition to these methods, we should also mention here the boundary integral methods that

are suitable for linear (Stokes or potential) equations only and are especially useful for simulation of thin

films and foams (see [4]). The technique that we discuss in the present paper belongs to the class of the

Eulerian methods.

Quite surprisingly, most of the available Eulerian methods for multifluid flows employ either a finite
difference or a finite volume spatial discretization. The finite or spectral elements are applied almost ex-

clusively in Lagrangian formulations (see for example [5–7]). An Eulerian type of method for simulation of

flows containing rigid particles was developed by Glowinski and collaborators [8], using the fictitious

domain idea with distributed Lagrange multipliers. This idea, however, is not directly applicable to free-

surface flows. As we shall try to demonstrate in this paper, the Galerkin type of methods is ideally suited for

Eulerian formulations. They avoid the introduction of artificial distribution functions to account for the

singular forces (surface tension for example) and naturally incorporate the interfacial boundary conditions.

Moreover, they allow for a very easy correction of the interpolation near the interfaces so that the method
has good mass conservation properties (a crucial feature when free boundaries are considered). One of the

difficulties of the Eulerian methods is that for an accurate computation of the surface forces, it is necessary

to compute the precise position of the interfaces with respect to the Eulerian grid. Since the shape of these

interfaces can be very complicated, this task is very difficult (especially in 3D). Within the framework of the

Galerkin formulation, it is not necessary anymore to know the intersections of the interfaces with the

volume grid cells. One only needs to determine the phase to which the different integration points belong. In

fact, for such an approach the numerical integration becomes a very important issue. Therefore, we de-

veloped an adaptive Newton–Cotes integration procedure which accounts for the position of the interfaces.
One of the big computational advantages of the Eulerian methods is that for simple geometries (which is

the case of the direct multiphase simulations) they allow for the use of structured grids which facilitates the

parallel implementation of the iterative algorithms for the linear solves. The present technique preserves

this feature although it corrects locally the interpolation of the velocity and pressure in order to account for

their singularity at the fluid–fluid interfaces. So, the resulting procedure is computationally effective and

appropriate for large scale problems.

The remainder of the paper is organized as follows. In Section 2 we discuss the mathematical model and

in Section 3 we describe the numerical technique. In Section 4 we present the results of the numerical tests
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and demonstrate the capabilities of this technique by solving several problems involving drops in viscous

flows.

The analysis of the Eulerian methods for free-surface flows is usually quite complicated. To the best of

our knowledge, there are no convergence proofs for numerical approximations of the unsteady Navier–

Stokes equations in domains with free surfaces. There exist a theory for the so-called immersed interface

method for elliptic problems with singularities (see [9]). The method presented in this paper has some

common features with the immersed interface method. Its numerical analysis will be a subject of another

study.

2. Mathematical formulation

We consider a bounded domain X1 with an external boundary C filled with a Newtonian liquid with

density q1 and viscosity l1. Within this liquid we consider a drop X2 of another liquid with density q2 and
viscosity l2. The interface between X1 and X2 is denoted by R. For simplicity of the presentation we

presume the presence of only one particle but the extension to more particles is straightforward.
The equations of motion of the fluids in X1 and X2 are the Navier–Stokes equations (presented here in a

dimensionless, stress-divergence form)

Du1

Dt
¼ r � r1 þ f1; r � u1 ¼ 0 in X1; ð1Þ

k
Du2

Dt
¼ r � r2 þ f2; r � u2 ¼ 0 in X2; ð2Þ

where ui are the velocities, ri are the stress tensors and f i are the external forces in Xi; i ¼ 1; 2. In the
present case f1 ¼ 1=ðFrÞg, g being the unit vector in the direction of the gravity acceleration and

f2 ¼ k=ðFrÞg, with k ¼ q2=q1 and the Froude number defined as Fr ¼ U 2=ðgRÞ, g being the gravity accel-
eration. U being the characteristic velocity and R being the radius of a sphere with the same volume as the
particle. ri is defined as usual: ri ¼ pid þ 2=ReiD½ui	 with pi being the pressure in the corresponding phase,

D½ui	 ¼ 0:5½rui þ ðruiÞT	 being the rate-of-strain tensor and d being the Kronecker tensor. The Reynolds

numbers are defined as

Re1 ¼
URq1

l1
;

Re2 ¼
URq1

l2
¼ Re1=g:

ð3Þ

The boundary conditions on C are not of a concern for the present method and therefore we assume the

simplest case of Dirichlet conditions. At the interface R we prescribe the well-known conditions

ðr1 � r2Þn ¼
1

We
jn; u1 ¼ u2 on R; ð4Þ

where j is the mean curvature of R and n is the normal pointing towards the interior of the drop. As it will

be clear later, the method implicitly imposes also continuity of the tangential stress across the free

boundary. The Weber number is defined as We ¼ U 2Rq1=r, r being the surface tension coefficient. In

addition to this condition that expresses the force balance on the interface, we must enforce the continuity

of the velocity across the boundary which is usually done implicitly while constructing the velocity inter-

polation.
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The interface Rðx; tÞ is defined as a solution of the kinematic equation

oR
ot

þ ðu � rÞR ¼ 0: ð5Þ

To the best of our knowledge, the well-posedness of this problem has not been studied yet, mostly because

of its high complexity. Solonnikov [12] has proved well-posedness of the problem for a steady fall of a drop

in a liquid medium under the very restrictive condition that the density difference of the two fluids is very
small. Desjardins and Esteban [13] proved the existence of weak solutions in the case of rigid particles in

viscous liquids but the nonlinear dependence of the surface tension on the solution and the presence of the

(truly) free boundary makes the present problem harder to analyze. Nevertheless, many people tried (and

succeeded) in obtaining numerical solutions under much more relaxed conditions. This is the approach that

we admit in the present paper too.

3. Discretization procedure

In this section we will describe the present technique through a description of the three main components

of any numerical method for time dependent equations: the starting formulation (including time discreti-

zation and splitting), approximation of the solution space and eventually, a numerical integration proce-

dure which, as we shall see further, is a very non-trivial issue in the present case.

3.1. Integration of the advective terms

In order to deal with the advection nonlinearity we split the advective part of the Navier–Stokes equations

and integrate it alongside an approximation of the characteristic curves. It is a kind of a Lagrange–Galerkin

procedure and its detailed description is given in [14]. The intermediate (advected) velocity is given by

ð~uun; vÞX ¼ ðunðxÞ; vÞX; ð6Þ

where n denotes the time level, x is the foot of the characteristic starting at the point x 2 X,X ¼ X1 [ X2 and v

is the Galerkin test function to be introduced below. Usually x is linearly approximated using an appropriate

extrapolation for the velocity in the time interval ½tn; tnþ1	. The advantages of this method are the relatively
low cost and good stability properties. The most serious problem is the computation of the integral on the

right-hand side of (6). We assume that unðxÞ is approximated using the basis of ~uun and this yields a scheme

with a pointwise characteristic tracking in the points of the grid. This integration is by nomeans exact and this
causes the error to behave like Oðhk=dtÞ as discussed byMorton et al. [15]. This scheme is relatively cheap but,
particularly in the case of pure advection, it can have unsatisfactory mass conservation property and

therefore we currently consider some alternatives especially when solving for the indicator function.

3.2. Galerkin formulation and basis enrichment

If a second order backward difference scheme is used for time discretization then the remaining gen-

eralized Stokes problem with free boundaries reads

3unþ1
1 � 4~uun

1 þ ~uun�1
1

2Dt
¼ r � rnþ1

1 þ fnþ11 ; r � unþ1
1 ¼ 0 in X1;

k
3unþ1

2 � 4~uun
2 þ ~uun�1

2

2Dt
¼ r � rnþ1

2 þ fnþ12 ; r � unþ1
2 ¼ 0 in X2:

ð7Þ
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Here, ~uun�i; i ¼ 0; 1; are velocity fields from time levelsn � i, that are advected to time level n þ 1. unþ1
i ; i ¼ 1; 2;

are subjects to the boundary conditions described above. Before we derive the weak formulation of this

problem we would like to consider some properties of the solution. First of all, the strong formulation (7)

requires the pressures pi to be continuous all overXi; however, they do notmatch each other at the interface of

the particle (if the surface tension coefficient is non-zero). In aweak form, only an L2 regularity for the pressure
is required andCrouzeix–Raviart, discontinuous pressure elements can be used to approximate such solutions

(see [6]). However, these elements are not usable if projection schemes (with a pressure Poisson equation) are

employed because they require at least H 1 regularity for the pressure. Therefore most of the available tech-
niques approximate the pressure jump across R by means of continuous interpolations which are clearly not
optimal in such cases. The velocity will be continuous in the entire domain X but its normal derivative across

the interface can be discontinuous if g 6¼ 1. These considerations are a consequence of the boundary condition

(4) and the jump of the Reynolds number, and give us an idea of how to build approximations for these

quantities. Of course, they can be approximated using standard finite elements used to solve the Stokes

problem without free boundaries. The finite difference version of this approach is used in the method devel-

oped by Tryggvason and his collaborators (see for example [3]). The convergence rate of such a method,

however, cannot be expected to be optimal. If the interface is aligned with element faces or the finite difference
grid is constructed in similar fashion, the velocity interpolation will remain optimal but the pressure inter-

polation would very likely remain suboptimal. Moreover, this would require a continuous adjustment of the

grid to the moving interface. This is the approach used in the Lagrangian and the Eulerian–Lagrangian

techniques for solving interface problems (see [5,6]). From computational point of view, however, it is much

more convenient to keep the velocity–pressure grid fixed.Then the approximation for the pressure andvelocity

can be corrected properly around the interface so that to account for the singularities there. This is the main

idea of the immersed element method (see [9,10]). Another method developed in the same spirit is presented in

[11]. The inconvenience of this type ofmethods is that it requires an explicit information for the intersection of
the interfacewith the finite elements, which is very hard to compute in the 3D case, especially if higher (second)

order elements for the velocity are used. In fact, if we know explicitly the intersection of the interface with a

particular finite elementwe can simply locally refine the grid (temporarily, just for the current time step) so that

it is aligned with the interface. However, this becomes a very awkward task in 3D and especially if a higher

order (e.g., second) approximation is used. Therefore, we suggest here a correction to the approximation that

does not require an explicit knowledge of the intersection of the interface with the elements of the Eulerian

grid. Let us first define u and p as ujXi
¼ ui; pjXi

¼ pi. Also, throughout this section the variables with subscript

hdenote the approximations of the correspondingunsubscripted variables. Informally speakingwe choose the
pressure to be linear within each element which is not intersected by R. The velocity is a quadratic polynomial
within such elements. In other words in elements belonging entirely toX1 or entirely toX2, we use the standard

Taylor–Hood (P2 � P1) approximation. In order to ensure that the pressure is discontinuous across R we

correct the approximation within elements that are intersected by R in the following fashion. We present the
approximation in the 3D case, in terms of the barycentric coordinates l ¼ ðl1; l2; l3; l4Þ; i ¼ 1; . . . ; 4; associ-
ated with a given elementK. If x are the physical coordinates of a given point inK then x ¼ TKðlÞ,TK being the

transformation into the standard element. Then the approximation for the pressure within K, ph, reads

phðlÞ ¼
X4
i¼1

Pili þ
X4
i¼1

P �
i liHRðlÞ: ð8Þ

Here li are the barycentric coordinates of the ith vertex of the simplex and the function HRðlÞ is defined as

HRðlÞ ¼
1 if TKðlÞ 2 X1 \ K;
�1 if TKðlÞ 2 X2 \ K;
0 otherwise:

8<
:
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If we compare this expansion to the usual P1 expansion we can see that in addition to the standard

pressure unknowns pi, it contains exactly four additional unknowns for the pressure p�i which clearly

makes the pressure approximation discontinuous across the interface R between X1 and X2. The

evaluation of the function HRðlÞ is discussed below. The velocity is enriched in a similar fashion but the
basis is chosen so that the approximation has a discontinuous normal derivative across R. It uses
the so-called bubble functions associated with the centroid CK of the Kth element (see [16, p. 213], for
more information on bubble functions). If K̂K is the standard simplex associated with K then the

bubble function is given by b̂bðlÞ ¼ akl1l2l3l4, where ak is a scaling parameter. Then the approximation
for the velocity within K is chosen to be (it is presented again in 3D but the simplification to 2D is

obvious)

uhðlÞ ¼
X10
i¼1
Ui/ðlÞi þU

�
Cb̂bðlÞjDRðlÞj: ð9Þ

Here DRðlÞ is the so-called signed distance function whose value is equal to the shortest distance between
the point with local coordinates l and the interface R with + or ) sign, depending on the phase to which

the point belongs. We shall discuss the evaluation of this function below. The basis functions /i are the
standard P2 basis functions. As it is usually done with bubble-enriched finite elements, the bubble degree

of freedom can be condensed from the interpolation in order to avoid the need of updating the storage for

the matrices related to the velocity degrees of freedom. However, in the present case, since we use an

inner–outer (Uzawa) iteration to resolve the final linear system (see below), we simply express the bubble

degree of freedom using the values of the usual P2 degrees of freedom at the previous iteration step. For

the first step of the Uzawa iteration we use the velocity at the previous time step. Heuristically speaking, it

may be expected that when the Uzawa iteration is converged to a reasonable accuracy, this approach is

equivalent to the usual static condensation (of bubble degrees of freedom), but it is much easier to im-
plement. A strict equivalence, however, has not been established and the similarity was observed only in

numerical experiments.

More precisely, the functional spaces for the velocity and pressure are set up in the following way. Let

Th be a grid covering X, composed by tetrahedra (in 3D) or triangles (in 2D). Let alsoTh;R be the subset of

elements of Th that are intersected by R (note that we do not require R to be aligned with element faces).

Let us recall that TK is the standard (isoparametric) mapping TK : K̂K ! K, and let P2ðK̂KÞ ¼ spanf/ig,
P2;RðK̂KÞ ¼ fP2ðK̂KÞ � spanfjDRðlÞjb̂bgg,P1ðK̂KÞ ¼ spanfli; i ¼ 1; . . . ; 4g,P1;RðK̂KÞ ¼ spanfliHRðliÞ; i ¼ 1; . . . ; 4g.
Then the approximation spaces for the velocity, Xh, and the pressure, Mh, read

Xh ¼ fvh 2 H1
0ðXÞ \ C0ðXÞ; vhjK � Tk 2 P2ðK̂KÞ 8K 2 Th nTh;R; vhjK � Tk 2 P2;RðK̂KÞ 8K 2 Th;R; vhjoX

¼ 0g;

Mh ¼ qh 2 Ł2ðXÞ; qhjK � Tk 2 P1ðK̂KÞ 8K 2 Th nTh;R; qhjK � Tk 2 P1;RðK̂KÞ 8K 2 Th;R;

Z
X
qh dX

�

¼ 0

�
:

Then the discrete Galerkin formulation of (7) is obtained by multiplying each of the momentum equations

by an arbitrary element of Xh, vh, integrating the second order term by parts, substituting the approxi-

mation for u, uh, and summing the resulting variational formulations. Similarly, we multiply the continuity

equations by an arbitrary element of Mh, qh, and integrate over X. The unified Galerkin formulation then
reads
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Z
X

q
3unþ1

h � 4 euhuh
n þ euhuh

n�1

2Dt
vh dX þ

Z
X

rnþ1
h : D½vh	 dX ¼

Z
R

rnþ1
1;h

h
� rnþ1

2;h

i
nvh dsþ

Z
X
fnþ1vh dX

8vh 2 Xh; 06 n6N : ð10Þ

Z
X
r � unþ1

h qh dX ¼ 0 8qh 2 Mh; 06 n6N :

Here,

rjXi
¼ ri;

q ¼ 1 in X1

k in X2

�

and n is the normal to R pointing inside X2. Incorporating the natural boundary condition at the interface

we finally obtainZ
X

q
3unþ1

h � 4 euhuh
n þ euhuh

n�1

2Dt
vh dX þ

Z
X

rnþ1
h : D½vh	 dX ¼ 1

We

Z
R

jnvh ds þ
Z

X
fnþ1vh dX

8vh 2 Xh; 06 n6N ;Z
X
r � unþ1

h qh dX ¼ 0 8qh 2 Mh; 06 n6N :

ð11Þ

Substituting the expansions for uh and ph, (9) and (8), and for vh and qh the basis functions for these ex-

pansions we end up with the usual form of a linear system resulting from a saddle point problem

AUþ LTP ¼ F;

LU ¼ 0:
ð12Þ

Remark 3.1. The basis enrichment as introduced above is similar, from interpolation point of view, to a
local mesh refinement. Its advantage is that it avoids the explicit solution for the point of intersection of the

interface R with the volume finite elements. It is not completely equivalent to a local refinement since the so

introduced interpolation is not the same as the one that would be obtained by locally reconnecting the grid

at the points of intersection. One alternative for the pressure enrichment in particular, which can improve

its interpolation is to use the so-called P2ðP1 þ P0Þ elements (see [20, p. 552]) only around the fluid–fluid
interface. They include a discontinuous mode at the centroid of the elements thus allowing for an easy

introduction of an additional degree of freedom for the pressure in each phase. An advantage of this en-

richment would also be that it allows for an elementwise mass balance.

Remark 3.2. In general, the mass conservation properties of the algorithm seem to be crucial when free

boundary problems are to be solved. The reason is that the free boundary advection accumulates in time

any compressibility of the velocity field and if the divergence of the discrete field is high, the mass loss can
become intolerable for relatively short time periods. This is demonstrated on some of the examples in the

next section. Most of the existing algorithms incorporate a mechanism to compensate for the mass loss

from time to time during the time integration (see for example [17]). In our opinion, it is preferable to

enforce more strictly the incompressibility constraint at each time step. At present we are considering al-

ternatives for the spatial discretization, in particular the possibility for constructing 3D divergence-free
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elements. Actually, our experience shows that the mass conservation is the ultimate problem for the nu-

merical analysis of free boundary problems. This is in complete contrast to single phase flows where

probably the most widely used are the approximate projection schemes which do not strictly (up to the

machine accuracy) enforce the incompressibility constraint, and nevertheless produce very good results for

a wide range of flows.

3.3. Front tracking

In order to compute the surface integrals in the right-hand side of (11) we indicate the position of the free

boundary using second order isoparametric surface finite elements containing six points. This surface grid is

advected according to (5) which is discretized using a predictor–corrector scheme. The new position is first

predicted by a second order characteristic scheme. If XðtÞ is a point on the surface R then the predictor step
reads

Xnþ1
p ¼ Xn þ 0:5Dtð3un

h � un�1
h Þ:

Then the velocity field at level n þ 1; unþ1
h ; is computed using the so-predicted position of the free boundary.

This velocity field is used to correct the free boundary position according to

Xnþ1 ¼ Xn þ 0:5Dtðunþ1
h þ un

hÞ:

Substituting the second step into the first step, written for the next time level, we obtain the following

second order characteristic scheme for advection of the free boundary

Xnþ1
p ¼ Xn

p þ 0:5Dtð4un
h � 3un�1

h þ un�2
h Þ: ð13Þ

After a long advection, some of the surface elements may become intolerably stretched. Therefore, the

surface grid should be locally refined or unrefined. An algorithm for such correction of the front grid is

suggested in [3] and it can be directly implemented in the present case. For the problems considered in this
paper, however, this was not necessary.

3.4. Numerical integration

A major difficulty in constructing the system (12) is the computation of the volume integrals in the

left-hand side of (11) and the surface integral in the right-hand side. Since the free boundary generally

intersects the finite elements of the grid (which are also elementary integration volumes) the integrands in

the volume integrals are discontinuous across the free interface. On the other hand, the surface elements

used to track the free boundary are not aligned with faces of volume elements and therefore the inte-

grand under the surface integral in the right-hand side has a discontinuous first derivative. Thus, the

usual Gaussian quadratures used in the traditional finite element procedures are not suitable in the

present case. One possibility is to determine the intersections of the free boundary with each of the finite
elements cut by it and then locally refine the grid around it. However, as discussed above, the resulting

algorithm would be quite sophisticated especially in 3D. Instead, we developed an adaptive Newton–

Cotes integration procedure which hierarchically refines the grid around the free boundary, and thus it

can achieve sufficient accuracy. First each element intersected by the free boundary is subdivided into six

tetrahedra (first level of refinement, see Fig. 1), which are used to compute the volume integrals by a

simple four point Newton–Cotes rule. Then the refinement procedure is applied recursively to each of the

tetrahedra of the current refinement level until a convergence (with a predetermined accuracy) is

achieved. Example of a 2D refinement is shown in Fig. 2. Note that it makes no sense to use higher order
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quadrature rule because of the singularities in the integrands. All the subdivisions can be done on the

standard tetrahedron corresponding to the original finite element so that each refinement level simply

produces a new quadrature formula for the same finite element and the same integrand, i.e., we do not

change the Jacobean of the original element while doing the refinements. Although this is a very
straightforward procedure it can easily become prohibitively expensive especially if many volume

Fig. 1. First level of refinement of the standard tetrahedron.

Fig. 2. Four levels of refinement of the standard triangle.
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elements are intersected by free boundaries. However, the numerical experiments show that two levels of

adaptive refinement are usually enough.

The computation of the surface force is done without explicit computation of the curvature j. For a
closed surface the surface integral can be integrated by parts and the result involves only the normal to the

surface R

1

We

Z
R

jnvh ds ¼
1

We

Z
R
nðr � nÞvh ds ¼

1

We

Z
R
½rvh � nðn � rvhÞ	 ds: ð14Þ

3.5. Mass conservation

A crucial element in the integration procedure and in determining the values of the integrands in the

integration points is the way we determine whether an integration point is inside X1 or X2. A convenient

way to indicate this is to use the distance function

DRðx; tÞ ¼
dðx;R; tÞ if x 2 X1;
�dðx;R; tÞ if x 2 X2;

�

where dðx;R; tÞ is the shortest Cartesian distance from the point x to the free boundary R at the time instant
t. Since the initial shape of the free boundary is well known this function is easy to initialize and after that it
is advected with the flow according to the advection equation

oDR

ot
þr � ðDRuÞ ¼ 0: ð15Þ

This is an idea borrowed from the level set method (see for example [17]). It is a very convenient in-

dicator function in the present case too, since it can also be used for enrichment of the velocity basis as

discussed above and to compute the values of HR. At present, we solve (15) using the same characteristic

method as the one used for advection of the velocity field and discussed above. This is a very cheap
procedure to solve the advection equation because the search for the feet of the characteristics is to be

done anyway for the advective part of the Navier–Stokes equations and this is the most time consuming

part of the procedure. Of course, we could recover an indicator function from the surface grid infor-

mation, as most of the surface tracking methods do (see [3] for instance). This would require an extra

Poisson equation solve per time step while the advection of the indicator function does not require an

extra computational effort.For long advection, however, the indicator function will loose its coordination

with the surface grid. Therefore, it needs to be re-initialized from time to time (depending on the

problem). One possible way to do it is discussed below. For the simulations presented in this paper this
was not necessary.

If the velocity field is strictly divergence free this method would be strictly mass conservative and could

be used over long time periods. However, the strict divergence freedom of the velocity field is very hard (and

expensive) to be guaranteed. The same is also valid for the advection scheme for the surface grid (13). On

the other hand, the mass loss (gain) accumulates in time and even small non-zero divergence of the velocity

field can cause sometimes completely unphysical results over long time periods. A typical problem for

which this can happen is discussed in the next section. In order to improve the mass conservation properties

of the scheme we adopted the following approach. First we guarantee the divergence freedom of the ve-
locity field at the free surface by imposing with a high accuracy the condition that r � ujR ¼ 0. This is a

linear constraint on the velocity field and it can be imposed via a Lagrange multiplier k defined only at the
interface R. Then the variational formulation of the additionally constrained problem (which is a sort of a

saddle point problem) reads
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r � uhlh ds ¼ 0 8lh 2 Kh:

ð16Þ

Here lh are the test/trial functions for the Lagrange multipliers kh and Kh is spanned over them. They are

continuous piecewise linear polynomials (P1 functions) defined on the surface gridmarking the interfaceR. At
first glance, it may seem that imposingr � uhjR ¼ 0 repeats the imposition ofr � uhjX ¼ 0. However, the latter

condition is weaker than the former one, i.e., even if we obtain an optimal estimate for the divergence of the

velocity approximation inX, the convergence rate for the divergence at the free boundary isworse. It is possible
that no consistent estimate for it can be established. The numerical experiments show that this additional

constraint significantly improves the mass conservation properties of the scheme (see next section). Using the
so computed velocity field we advect the free boundary (i.e., the surface grid) and the distance function.

Since the advection of the distance function is less conservative than the advection of the free surface,

after sufficiently long integration they will not be well coordinated any more and then we need to re-ini-

tialize the distance function. This can be done for example with the approach of [19]. For the numerical

simulations reported in the present paper we did not need to use re-initialization but in some more extreme

cases it will certainly be necessary.

Remark 3.3. Another way to deal with the singularities at the interface is to approximate the d-function
accounting for the surface tension with smooth functions (usually trigonometric approximations). This

approach is especially popular among those, using the level set method (see [17]). It is not very clear,

however, how such an approximation influences the accuracy of the overall scheme. Moreover, as shown

above, the finite element method suggests a very natural way of treating such singular sources and therefore
we preferred to track the free interface, primarily for an accurate computation of the surface integrals that

arise in the weak formulation.

Remark 3.4. It is quite clear from the discussion above that the present procedure partially avoids the need of

a local refinement around the interface and therefore is heavily dependent on the accuracy of the integration

procedure in this part of the domain. Its advantage is that it does not require the explicit knowledge of the

intersection of the surface marking grid and the volume grid. On the other hand it needs to employ a more

elaborate integration procedure. Similar idea is used in [18] for modelling of crack growth.

3.6. Matrix storage and solution of the linear systems

The last problem that we need to address in this section concerns the solution of the linear system that

result from the discrete formulation (16). The additional Lagrange multipliers kh can be considered as an

additional ‘‘surface pressure’’ (of course their dimension is different from the one of pressure but they play a

very similar role). Thus the whole problem (16) can be considered as a modification of the generalized
Stokes problem. Let us denote the resulting linear system as

AUþ L̂LTP̂P ¼ F;

L̂LU ¼ 0;
ð17Þ
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where L̂L is a modification of L̂L that accounts for the surface Lagrange multipliers and P̂P is a corresponding

modification of the pressure vector. From algorithmic point of view the hardest to manage is the data

structure for the L̂L matrix because part of its entries should be updated at each time step since the basis is

dynamically enriched. An efficient way to do that is to partition it into four parts: L̂L11; L̂L12; L̂L21; L̂L22. L̂L11
corresponds to the permanent degrees of freedom for both velocity and pressure and it is computed once

and stored. L̂L12 and L̂L21 contain the entries linking the permanent and enriching degrees of freedom. L̂L22
contains the entries that link the enriching degrees of freedom for velocity and pressure (including the

surface degrees of freedom). These parts are stored separately (using compact storage) and only the last
three partitions are updated at each time step. For the velocity matrices this problem is avoided because of

the ‘‘explicit’’ static condensation for the bubble degrees of freedom discussed above.

Since the divergence freedom of the velocity field is crucial for the mass conservation properties of the

method the approximate projection schemes are not very suitable for they cannot control the velocity di-

vergence level with an arbitrary accuracy (unless of course amesh refinement is employed). Thereforewe chose

for the classical inner–outer iteration scheme usually called Uzawa iteration. It is well known that one needs a

carefully chosen preconditioner for the outer iteration to converge reasonably fast. For the time being we

chose as a pressure preconditioner thematrix L̂LM�1
l L̂LT withMl being a lumpedmassmatrix based on a linear

approximation of theP2 mass matrix. For the numerical examples presented in the next section we performed

only two to six outer iterations per time step and yet, the mass was very accurately conserved.

4. Numerical results

In order to verify the capabilities of the surface advection scheme we simulated the motion of a closed

surface in a severe shear flow, a 3D lid-driven cavity flow. The cavity is discretized using 83 cubes which are

subsequently divided into six tetrahedra each. A spherical surface is placed initially centred at the centre of

the cavity and discretized using 320 surface triangles. The Reynolds number (based on the lid velocity) is 10,

the fluid inside and outside the cavity is the same, and the surface tension is zero. The advection is per-

formed until t ¼ 4 when the quality of the front mesh becomes intolerably low. The shape of the interface at
different time instants is shown in Fig. 3. Due to the limitations of the postprocessor the interface shape is

drawn using linear approximation. This example clearly demonstrates that the front tracking scheme

adopted in the present technique is quite stable and tolerant to very large deformations, considering the

very course volume resolution. The total volume of the particle measured by

V ¼ 1

3

Z
R
x � n ds

differs from the volume of the initial sphere with 4% only, although we performed just two outer iterations

at each time step for solving (17). This also clearly demonstrates the quality of the preconditioner for the

pressure system.

The first test case that we selected is a trivial (from physical point of view) problem, which however is
known to be tough from numerical point of view. This is the problem for relaxation of a fluid particle

whose initial shape is different from spherical under a zero gravity condition. Ideally, the particle should

recover its stable spherical shape and the magnitude of the velocity field should gradually go to zero. Also

the particle should preserve its initial volume. The problem is quite severe numerically because the only

driving force in it is the surface tension which acts as a d-function. We simulated the relaxation of an
initially ellipsoidal drop centred at the centre of the cavity given by

x2

a2
þ y2

b2
þ z2

c2
¼ 1

with a ¼ b ¼ 0:25, c ¼ 0:128.
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For the first set of simulations the grid contained 103 uniform cubes subdivided each again into six

tetrahedra and the surface grid contained 320 P2 elements. The physical parameters of the problem were:

q1 ¼ q2 ¼ 1, l1 ¼ l2 ¼ 0:1, r ¼ 0:1. If the characteristic length is the bubble radius R and the characteristic
velocity is U ¼ l1=ðq1RÞ, the dimensionless parameters are Re ¼ 1, We ¼ 1, k ¼ g ¼ 1. The results for the
evolution of the shape of the particle are presented in Fig. 4. The velocity field corresponding to the particle

shape in the middle of Fig. 4 ðt ¼ 0:3Þ is presented in Fig. 5(a). It clearly shows the relatively rough volume
grid that has been used in the present simulation. For comparison, Li and Lubkin [21] used a grid of

80� 80 finite difference cells for solution of this problem under the assumption of a Stokes flow in 2D. The

mass loss in the present case with the full enrichment of the basis is less than the one achieved by Li and

Lubkin [21]. Of course, we pay some price for the use of second order (for the velocity) elements but still our

grid contains (at the average) less than 21� 21� 21 points as opposed to 81� 81 grid points used in [21].

The present results were verified on a grid with a twice smaller stepsize in each direction. The results for the
particle shape and the velocity field at t ¼ 0:3, and the same parameters in the previous simulation, are
presented in Fig. 5(b). The difference between the two solutions is very small and the particle shapes cannot

be distinguished if plotted in the same frame. We also checked if the pressure jump was correctly accounted

Fig. 4. Relaxation of an initially ellipsoidal particle at zero-gravity condition; the bubble shape at different time instants.

Fig. 3. Close surface advection in a driven cavity flow.
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for, and indeed, at the final static stage, the error in pressure jump across the interface was less than 1% (on

the coarser grid).

As Table 1 demonstrates, the excellent performance of the present algorithm is due to the basis en-

richment. In this table we present the results for the mass loss when solving this problem without any basis

enrichment, with surface enrichment only, with volume enrichment only and with both volume and surface
enrichments. The results clearly advocate for the need of local improvement of the interpolation when free

boundary problems are considered. Even at very small Weber number (We ¼ 1) the present technique

produces a result with a negligible mass loss (2.1%).

The accuracy of the present technique was also quantitatively verified using a classical solution of a free

boundary problem due to Lamb (see [22]). It concerns the oscillations of the surface of a bubble in an

inviscid liquid at zero gravity (Lamb used a potential theory to derive this solution). We performed two

tests starting again with an initially ellipsoidal bubble (a ¼ b ¼ 0:55; c ¼ 0:4132) whose volume is equal to
the volume of a sphere with a radius 0.5. We resolved the problem in 1/8 of the domain imposing symmetry
conditions on the planes x ¼ 0; y ¼ 0; z ¼ 0 and the domain was defined by 06 x6 1; 06 y 6 1; 06 z6 1.
The densities were chosen to be q1 ¼ 0:01; q2 ¼ 1, and the viscosities: l1 ¼ 0:0002 and l2 ¼ 0:01 The
surface tension coefficients in the two cases were r ¼ 0:5 and r ¼ 0:2 correspondingly. Fig. 6 shows the
amplitude of the oscillation of the surface in a point which initially was on the line z ¼
0 \ x2=a2 þ y2=b2 þ z2=c2 ¼ 1. The periods of the oscillations are 1:16 and 1:83 correspondingly, and they
agree well with the potential flow results of Lamb: 1.11 and 1.76. Since in both cases the density and

viscosity ratios are very large, this test clearly demonstrates the capability of the present technique to handle

such cases. Note that the grid used for these simulations was a uniform grid containing 103 uniform cubes
subdivided into six P2 � P1 tetrahedra and no mesh refinement around the interface was performed a

priori.

The ability of the present technique to simulate relatively sophisticated free boundary problems is

demonstrated in the next example of a rising particle towards a fluid–fluid interface. Fig. 7 shows the

Fig. 5. Relaxation of an initially ellipsoidal particle at zero-gravity condition; the velocity field.

Table 1

Mass loss for the relaxation problem; Re ¼ 1, k ¼ g ¼ 1

We Without enrichment Surface only Volume only Full

5 21.6% 14.0% 4.3% 1.2%

1 40.8% 29.6% 9.6% 2.1%
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deformation of the two surfaces and the corresponding velocity field. The background contour shading is

the total pressure distribution. The problem is simulated in 3D using the same grids as the ones in the

previous simulation. If we choose the same characteristic velocity too, then the dimensionless parameters

are: Re ¼ 1; We ¼ 0:3; Fr ¼ 0:076; k ¼ 0:005; g ¼ 0:1 (the fluid in the droplet and above the initially flat
boundary are the same). Even using such a coarse grid we were able to simulate the droplet rise at a rel-

atively large density and viscosity ratios of the two liquids involved. Of course, with this grid we cannot

correctly resolve the film drainage phenomenon that occurs when the droplet is very close to the interface

and therefore we stopped the calculations when the film thickness became comparable to the element size.

But it is well known that the correct description of the film drainage requires to take into account the

microphysics of this process (the van der Waals forces for example) which is not incorporated in the

Navier–Stokes equations.

Fig. 6. The amplitude of an oscillating bubble vs. time.

Fig. 7. Droplet rising towards a liquid–liquid interface: the fluid in the droplet and the upper fluid are the same;

Re ¼ 1; We ¼ 0:3; Fr ¼ 0:076; k ¼ 0:005; g ¼ 0:1.
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At the end we made a qualitative comparison for the droplet shape with an experimental result due to
Hartland [23]. He investigated experimentally the coalescence of a drop with a bulk of the same liquid

lying on top of another, very viscous liquid. He provided a picture of the ‘‘terminal’’ shape of the drop

and the initially flat interface between the two liquids i.e. the shape when the long film drainage process

started. The viscosity ratio of the two liquids and the capillary number in the experiment were g ¼ 0:021
and Ca ¼ 1:037. We simulated a very similar system which, with respect to the same characteristic pa-

rameters as the one in the case of the relaxation problem above, is characterized by the dimensionless

Fig. 8. Droplet rising towards a liquid–liquid interface: the volume mesh and the interface grids at time t ¼ 0:32; volume mesh:

14� 14� 17 cubes, six (P2) tetrahedra in each cube; drop surface: 320 (P2) triangles; horizontal interface: 256 (P2) triangles.

Fig. 9. Droplet rising towards a liquid–liquid interface; the fluid in the droplet and the upper fluid are the same;

Re ¼ 1; We ¼ 0:07; Fr ¼ 0:022; k ¼ 0:5; g ¼ 0:02. Left: experimental picture of Hartland [23]; right: our result.
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parameters Re ¼ 1; We ¼ 0:07; Fr ¼ 0:022; k ¼ 0:5; g ¼ 0:02. The surface tension force is relatively large
in this case and therefore we needed to refine the grid in the vicinity of the two interfaces. The grid used

in this numerical simulation with the shape of the interfaces corresponding to time t ¼ 0:32 is presented
in Fig. 8. 1 The experimental picture of Hartland [23] and the numerical results for the shapes of the two

interfaces at time t ¼ 0; 0:32; 0:6 obtained in our simulation are presented in Fig. 9. The qualitative

similarity of the experimental and numerical results is quite clear. The quantitative comparison is not

very representative since in the experiment the drop was released from a needle close to the interface and

it was already deformed in the time of release. In our case we started with a spherical initial shape of the
drop.

5. Conclusions

The finite element technique for free boundary problems which is introduced in this article should be

classified as a front tracking Eulerian technique. However, it also advects a marker function which is

similar to the signed distance function used by the level set methods. This is done because on one hand the
finite element method incorporates the force balance boundary condition on the interface as a natural

boundary condition and therefore it requires the computation of a surface integral. On the other hand,

the signed distance function is a convenient indicator for the different phases and can be used for an easy

enrichment of the velocity interpolation around the free boundaries. Its advection is much cheaper than

the solution of a global Poisson boundary value problem (at each time step) for computing of a phase

indicator as done by most existing front tracking techniques. Of course, this causes, after a sufficiently

long advection, a discrepancy between the indicator and the surface grid. In such cases we suggest to re-

initialize the indicator function which in the present case, unlike in the case of the level set method does
not need to be strictly a distance function and therefore can be re-initialized relatively easily. Note, that

one can choose to use the ‘‘pure’’ front tracking approach and reconstruct the indicator at each time step.

On the other hand, it is also possible to advect the indicator and then account for the surface tension as in

the case of the level set method (see [17]). The choice of the approach, however, will not affect the en-

richment mechanism suggested in this paper and it can be used in both cases. It is beyond the scope of

this study to judge which of these approaches yields better results but in our opinion, the choice is

problem dependent.

The most severe problems that this (and not only this) technique faces are: (i) how to perform a
conservative advection of the surface and the distance function; (ii) how to enforce efficiently and very

accurately the incompressibility constraint. Of course these two problems are very intimately related. The

mass conservation problem is most severe around the free boundary and it is caused by the inability of the

continuous velocity/pressure approximations to accurately fit the singular solutions. Probably the best

way to tackle this problem is to locally refine the grid in the vicinity of the free boundary so that the

surface elements are faces of volume elements. This is a relatively easy problem in 2D if linear elements

are used. But in 3D and if isoparametric elements are to be employed this is a serious problem. The

alternative basis enrichment for both, the velocity and pressure interpolations, suggested in the present
paper allows us to avoid this problem. The trouble then comes with the quadrature to be used for the

computation of the volume and surface integrals required by the Galerkin formulation. We used an

adaptive Newton–Cotes quadrature which allows to compute them with a very high accuracy. The

problem (i) mentioned above still requires a more accurate solution and we are presently working on it.

1 Because of the limitations of the postprocessor each P2 tetrahedron is represented by eight linear tetrahedra in the grid; similarly

each triangular element is represented by four linear triangles.
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Another clear advantage of the present technique is that it is probably the only available formally second

order (both in space and time) Eulerian technique. This advantage is clearly demonstrated by the nu-

merical examples that we present here. The use of second order isoparametric elements allows for accurate

representation of surfaces with a complex geometry which can appear in polymer molding problems for

example. At the end, since it is widely believed that the surface tracking does not allow to simulate

changes in the topology of the particles, we would like to refer to [24] where it is demonstrated that with a

proper remeshing this can be achieved.
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